3.463 \(\int \frac{(a d e+(c d^2+a e^2) x+c d e x^2)^{5/2}}{x^3 (d+e x)} \, dx\)

Optimal. Leaf size=339 \[ \frac{3 \sqrt{c} \sqrt{d} \left (5 a^2 e^4+10 a c d^2 e^2+c^2 d^4\right ) \tanh ^{-1}\left (\frac{a e^2+c d^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{8 \sqrt{e}}-\frac{3 \sqrt{a} \sqrt{e} \left (a^2 e^4+10 a c d^2 e^2+5 c^2 d^4\right ) \tanh ^{-1}\left (\frac{x \left (a e^2+c d^2\right )+2 a d e}{2 \sqrt{a} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{8 \sqrt{d}}-\frac{(a e-c d x) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{2 x^2}-\frac{3 \left (a e \left (a e^2+3 c d^2\right )-c d x \left (3 a e^2+c d^2\right )\right ) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 x} \]

[Out]

(-3*(a*e*(3*c*d^2 + a*e^2) - c*d*(c*d^2 + 3*a*e^2)*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(4*x) - ((a
*e - c*d*x)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(2*x^2) + (3*Sqrt[c]*Sqrt[d]*(c^2*d^4 + 10*a*c*d^2*
e^2 + 5*a^2*e^4)*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x
 + c*d*e*x^2])])/(8*Sqrt[e]) - (3*Sqrt[a]*Sqrt[e]*(5*c^2*d^4 + 10*a*c*d^2*e^2 + a^2*e^4)*ArcTanh[(2*a*d*e + (c
*d^2 + a*e^2)*x)/(2*Sqrt[a]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(8*Sqrt[d])

________________________________________________________________________________________

Rubi [A]  time = 0.38817, antiderivative size = 339, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 6, integrand size = 40, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.15, Rules used = {849, 812, 843, 621, 206, 724} \[ \frac{3 \sqrt{c} \sqrt{d} \left (5 a^2 e^4+10 a c d^2 e^2+c^2 d^4\right ) \tanh ^{-1}\left (\frac{a e^2+c d^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{8 \sqrt{e}}-\frac{3 \sqrt{a} \sqrt{e} \left (a^2 e^4+10 a c d^2 e^2+5 c^2 d^4\right ) \tanh ^{-1}\left (\frac{x \left (a e^2+c d^2\right )+2 a d e}{2 \sqrt{a} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{8 \sqrt{d}}-\frac{(a e-c d x) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{2 x^2}-\frac{3 \left (a e \left (a e^2+3 c d^2\right )-c d x \left (3 a e^2+c d^2\right )\right ) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 x} \]

Antiderivative was successfully verified.

[In]

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/(x^3*(d + e*x)),x]

[Out]

(-3*(a*e*(3*c*d^2 + a*e^2) - c*d*(c*d^2 + 3*a*e^2)*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(4*x) - ((a
*e - c*d*x)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(2*x^2) + (3*Sqrt[c]*Sqrt[d]*(c^2*d^4 + 10*a*c*d^2*
e^2 + 5*a^2*e^4)*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x
 + c*d*e*x^2])])/(8*Sqrt[e]) - (3*Sqrt[a]*Sqrt[e]*(5*c^2*d^4 + 10*a*c*d^2*e^2 + a^2*e^4)*ArcTanh[(2*a*d*e + (c
*d^2 + a*e^2)*x)/(2*Sqrt[a]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(8*Sqrt[d])

Rule 849

Int[((x_)^(n_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_))/((d_) + (e_.)*(x_)), x_Symbol] :> Int[x^n*(a/d + (c*
x)/e)*(a + b*x + c*x^2)^(p - 1), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b
*d*e + a*e^2, 0] &&  !IntegerQ[p] && ( !IntegerQ[n] ||  !IntegerQ[2*p] || IGtQ[n, 2] || (GtQ[p, 0] && NeQ[n, 2
]))

Rule 812

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[((d + e*x)^(m + 1)*(e*f*(m + 2*p + 2) - d*g*(2*p + 1) + e*g*(m + 1)*x)*(a + b*x + c*x^2)^p)/(e^2*(m + 1)*(m
+ 2*p + 2)), x] + Dist[p/(e^2*(m + 1)*(m + 2*p + 2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^(p - 1)*Simp[g*(
b*d + 2*a*e + 2*a*e*m + 2*b*d*p) - f*b*e*(m + 2*p + 2) + (g*(2*c*d + b*e + b*e*m + 4*c*d*p) - 2*c*e*f*(m + 2*p
 + 2))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2
, 0] && RationalQ[p] && p > 0 && (LtQ[m, -1] || EqQ[p, 1] || (IntegerQ[p] &&  !RationalQ[m])) && NeQ[m, -1] &&
  !ILtQ[m + 2*p + 1, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{x^3 (d+e x)} \, dx &=\int \frac{(a e+c d x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{x^3} \, dx\\ &=-\frac{(a e-c d x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{2 x^2}-\frac{3}{8} \int \frac{\left (-2 a e \left (3 c d^2+a e^2\right )-2 c d \left (c d^2+3 a e^2\right ) x\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^2} \, dx\\ &=-\frac{3 \left (a e \left (3 c d^2+a e^2\right )-c d \left (c d^2+3 a e^2\right ) x\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 x}-\frac{(a e-c d x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{2 x^2}+\frac{3}{16} \int \frac{2 a e \left (5 c^2 d^4+10 a c d^2 e^2+a^2 e^4\right )+2 c d \left (c^2 d^4+10 a c d^2 e^2+5 a^2 e^4\right ) x}{x \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx\\ &=-\frac{3 \left (a e \left (3 c d^2+a e^2\right )-c d \left (c d^2+3 a e^2\right ) x\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 x}-\frac{(a e-c d x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{2 x^2}+\frac{1}{8} \left (3 a e \left (5 c^2 d^4+10 a c d^2 e^2+a^2 e^4\right )\right ) \int \frac{1}{x \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx+\frac{1}{8} \left (3 c d \left (c^2 d^4+10 a c d^2 e^2+5 a^2 e^4\right )\right ) \int \frac{1}{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx\\ &=-\frac{3 \left (a e \left (3 c d^2+a e^2\right )-c d \left (c d^2+3 a e^2\right ) x\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 x}-\frac{(a e-c d x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{2 x^2}-\frac{1}{4} \left (3 a e \left (5 c^2 d^4+10 a c d^2 e^2+a^2 e^4\right )\right ) \operatorname{Subst}\left (\int \frac{1}{4 a d e-x^2} \, dx,x,\frac{2 a d e-\left (-c d^2-a e^2\right ) x}{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )+\frac{1}{4} \left (3 c d \left (c^2 d^4+10 a c d^2 e^2+5 a^2 e^4\right )\right ) \operatorname{Subst}\left (\int \frac{1}{4 c d e-x^2} \, dx,x,\frac{c d^2+a e^2+2 c d e x}{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )\\ &=-\frac{3 \left (a e \left (3 c d^2+a e^2\right )-c d \left (c d^2+3 a e^2\right ) x\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 x}-\frac{(a e-c d x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{2 x^2}+\frac{3 \sqrt{c} \sqrt{d} \left (c^2 d^4+10 a c d^2 e^2+5 a^2 e^4\right ) \tanh ^{-1}\left (\frac{c d^2+a e^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{8 \sqrt{e}}-\frac{3 \sqrt{a} \sqrt{e} \left (5 c^2 d^4+10 a c d^2 e^2+a^2 e^4\right ) \tanh ^{-1}\left (\frac{2 a d e+\left (c d^2+a e^2\right ) x}{2 \sqrt{a} \sqrt{d} \sqrt{e} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{8 \sqrt{d}}\\ \end{align*}

Mathematica [A]  time = 2.37238, size = 334, normalized size = 0.99 \[ \frac{\sqrt{(d+e x) (a e+c d x)} \left (\frac{\sqrt{d} \sqrt{a e+c d x} \left (-a^2 e^2 (2 d+5 e x)-9 a c d e x (d-e x)+c^2 d^2 x^2 (5 d+2 e x)\right )}{x^2}+\frac{3 \sqrt{c} d \sqrt{c d} \left (5 a^2 e^4+10 a c d^2 e^2+c^2 d^4\right ) \sinh ^{-1}\left (\frac{\sqrt{c} \sqrt{d} \sqrt{e} \sqrt{a e+c d x}}{\sqrt{c d} \sqrt{c d^2-a e^2}}\right )}{\sqrt{e} \sqrt{c d^2-a e^2} \sqrt{\frac{c d (d+e x)}{c d^2-a e^2}}}-\frac{3 \sqrt{a} \sqrt{e} \left (a^2 e^4+10 a c d^2 e^2+5 c^2 d^4\right ) \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a e+c d x}}{\sqrt{a} \sqrt{e} \sqrt{d+e x}}\right )}{\sqrt{d+e x}}\right )}{4 \sqrt{d} \sqrt{a e+c d x}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/(x^3*(d + e*x)),x]

[Out]

(Sqrt[(a*e + c*d*x)*(d + e*x)]*((Sqrt[d]*Sqrt[a*e + c*d*x]*(-9*a*c*d*e*x*(d - e*x) + c^2*d^2*x^2*(5*d + 2*e*x)
 - a^2*e^2*(2*d + 5*e*x)))/x^2 + (3*Sqrt[c]*d*Sqrt[c*d]*(c^2*d^4 + 10*a*c*d^2*e^2 + 5*a^2*e^4)*ArcSinh[(Sqrt[c
]*Sqrt[d]*Sqrt[e]*Sqrt[a*e + c*d*x])/(Sqrt[c*d]*Sqrt[c*d^2 - a*e^2])])/(Sqrt[e]*Sqrt[c*d^2 - a*e^2]*Sqrt[(c*d*
(d + e*x))/(c*d^2 - a*e^2)]) - (3*Sqrt[a]*Sqrt[e]*(5*c^2*d^4 + 10*a*c*d^2*e^2 + a^2*e^4)*ArcTanh[(Sqrt[d]*Sqrt
[a*e + c*d*x])/(Sqrt[a]*Sqrt[e]*Sqrt[d + e*x])])/Sqrt[d + e*x]))/(4*Sqrt[d]*Sqrt[a*e + c*d*x])

________________________________________________________________________________________

Maple [B]  time = 0.075, size = 2688, normalized size = 7.9 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/x^3/(e*x+d),x)

[Out]

1/8*e^4/d^3*a*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)*x+1/8*e^2/d*c*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)*x+
1/d/a*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)*c+1/4/d^3/a/x*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(7/2)+3/256*d^5*
c^3*ln((1/2*a*e^2-1/2*c*d^2+(d/e+x)*c*d*e)/(d*e*c)^(1/2)+(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2))/(d*e*c
)^(1/2)+1/4*e^3/d^2*a*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)+3/4*e^4/d*a^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^
(1/2)-3/8*e^5*a^3/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+2*(a*d*e)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^
(1/2))/x)+93/256*d^5*c^3*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2
))/(d*e*c)^(1/2)+15/128*e^6/d*a^3*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*
x^2)^(1/2))/(d*e*c)^(1/2)+147/64*e*d^2*c^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*x+3/64*e^6/d^3*a^3/c*(a*d*e
+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+333/64*e^2*d*a*c*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/16*e^5/d^4*a^2/c*
(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)+9/64*e^5/d^2*a^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*x-1/2/d^2/a/e
/x^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(7/2)+3/4*d/a^2/e^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)*c^2+5/4*d^2
/a/e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)*c^2+5/4*d/a*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)*x*c^2+3/4/a^2
/e*c^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)*x-3/128*e^8/d^5*a^4/c^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)
+39/64*e^3*a*c*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*x-1/16*e^5/d^4*a^2/c*(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/
e+x))^(3/2)-9/64*e^5/d^2*a^2*(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2)*x+3/128*e^8/d^5*a^4/c^2*(c*d*e*(d/e
+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2)+3/64*e^2*d*a*c*(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2)-15/128*e^6/d*a
^3*ln((1/2*a*e^2-1/2*c*d^2+(d/e+x)*c*d*e)/(d*e*c)^(1/2)+(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2))/(d*e*c)
^(1/2)-3/64*e*d^2*c^2*(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2)*x-1/8*e^4/d^3*a*(c*d*e*(d/e+x)^2+(a*e^2-c*
d^2)*(d/e+x))^(3/2)*x-3/64*e^6/d^3*a^3/c*(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2)+1/8*e^2/d*c*(c*d*e*(d/e
+x)^2+(a*e^2-c*d^2)*(d/e+x))^(3/2)*x+9/64*e^3*a*c*(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2)*x+387/128*d^3*
c^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)-1/5*e^2/d^3*(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(5/2)+1/16*e*c
*(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(3/2)-3/128*d^3*c^2*(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2)-1/2
0*e^2/d^3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)+31/16*e*c*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)-15/4*d^2*a
^2*e^3/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+2*(a*d*e)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/x)*c
-3/4/d/a^2/e^2/x*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(7/2)*c-1/4/d^2/a*e*c*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/
2)*x+15/256*e^8/d^3*a^4/c*ln((1/2*a*e^2-1/2*c*d^2+(d/e+x)*c*d*e)/(d*e*c)^(1/2)+(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*
(d/e+x))^(1/2))/(d*e*c)^(1/2)+3/64*e^7/d^4*a^3/c*(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2)*x-3/256*e^10/d^
5*a^5/c^2*ln((1/2*a*e^2-1/2*c*d^2+(d/e+x)*c*d*e)/(d*e*c)^(1/2)+(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2))/
(d*e*c)^(1/2)-3/64*e^7/d^4*a^3/c*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*x+3/256*e^10/d^5*a^5/c^2*ln((1/2*a*e^
2+1/2*c*d^2+c*d*e*x)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e*c)^(1/2)+225/128*e^4*d*a^2*c*
ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e*c)^(1/2)+975/256*
e^2*d^3*a*c^2*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e*c)^
(1/2)-15/256*e^8/d^3*a^4/c*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e*c)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1
/2))/(d*e*c)^(1/2)+15/128*e^4*d*a^2*c*ln((1/2*a*e^2-1/2*c*d^2+(d/e+x)*c*d*e)/(d*e*c)^(1/2)+(c*d*e*(d/e+x)^2+(a
*e^2-c*d^2)*(d/e+x))^(1/2))/(d*e*c)^(1/2)-15/256*e^2*d^3*a*c^2*ln((1/2*a*e^2-1/2*c*d^2+(d/e+x)*c*d*e)/(d*e*c)^
(1/2)+(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d/e+x))^(1/2))/(d*e*c)^(1/2)-15/8*d^4*a*e/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e
^2+c*d^2)*x+2*(a*d*e)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/x)*c^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac{5}{2}}}{{\left (e x + d\right )} x^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/x^3/(e*x+d),x, algorithm="maxima")

[Out]

integrate((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(5/2)/((e*x + d)*x^3), x)

________________________________________________________________________________________

Fricas [A]  time = 46.7206, size = 3301, normalized size = 9.74 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/x^3/(e*x+d),x, algorithm="fricas")

[Out]

[1/16*(3*(c^2*d^4 + 10*a*c*d^2*e^2 + 5*a^2*e^4)*sqrt(c*d/e)*x^2*log(8*c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e^
2 + a^2*e^4 + 4*(2*c*d*e^2*x + c*d^2*e + a*e^3)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(c*d/e) + 8*(c
^2*d^3*e + a*c*d*e^3)*x) + 3*(5*c^2*d^4 + 10*a*c*d^2*e^2 + a^2*e^4)*sqrt(a*e/d)*x^2*log((8*a^2*d^2*e^2 + (c^2*
d^4 + 6*a*c*d^2*e^2 + a^2*e^4)*x^2 - 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d^2*e + (c*d^3 + a*d*e
^2)*x)*sqrt(a*e/d) + 8*(a*c*d^3*e + a^2*d*e^3)*x)/x^2) + 4*(2*c^2*d^2*e*x^3 - 2*a^2*d*e^2 + (5*c^2*d^3 + 9*a*c
*d*e^2)*x^2 - (9*a*c*d^2*e + 5*a^2*e^3)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/x^2, -1/16*(6*(c^2*d^4
 + 10*a*c*d^2*e^2 + 5*a^2*e^4)*sqrt(-c*d/e)*x^2*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*
e*x + c*d^2 + a*e^2)*sqrt(-c*d/e)/(c^2*d^2*e*x^2 + a*c*d^2*e + (c^2*d^3 + a*c*d*e^2)*x)) - 3*(5*c^2*d^4 + 10*a
*c*d^2*e^2 + a^2*e^4)*sqrt(a*e/d)*x^2*log((8*a^2*d^2*e^2 + (c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4)*x^2 - 4*sqrt(c*
d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d^2*e + (c*d^3 + a*d*e^2)*x)*sqrt(a*e/d) + 8*(a*c*d^3*e + a^2*d*e^3)
*x)/x^2) - 4*(2*c^2*d^2*e*x^3 - 2*a^2*d*e^2 + (5*c^2*d^3 + 9*a*c*d*e^2)*x^2 - (9*a*c*d^2*e + 5*a^2*e^3)*x)*sqr
t(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/x^2, 1/16*(6*(5*c^2*d^4 + 10*a*c*d^2*e^2 + a^2*e^4)*sqrt(-a*e/d)*x^2
*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d*e + (c*d^2 + a*e^2)*x)*sqrt(-a*e/d)/(a*c*d*e^2*
x^2 + a^2*d*e^2 + (a*c*d^2*e + a^2*e^3)*x)) + 3*(c^2*d^4 + 10*a*c*d^2*e^2 + 5*a^2*e^4)*sqrt(c*d/e)*x^2*log(8*c
^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4 + 4*(2*c*d*e^2*x + c*d^2*e + a*e^3)*sqrt(c*d*e*x^2 + a*d*e
+ (c*d^2 + a*e^2)*x)*sqrt(c*d/e) + 8*(c^2*d^3*e + a*c*d*e^3)*x) + 4*(2*c^2*d^2*e*x^3 - 2*a^2*d*e^2 + (5*c^2*d^
3 + 9*a*c*d*e^2)*x^2 - (9*a*c*d^2*e + 5*a^2*e^3)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/x^2, -1/8*(3*
(c^2*d^4 + 10*a*c*d^2*e^2 + 5*a^2*e^4)*sqrt(-c*d/e)*x^2*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)
*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(-c*d/e)/(c^2*d^2*e*x^2 + a*c*d^2*e + (c^2*d^3 + a*c*d*e^2)*x)) - 3*(5*c^2*d^
4 + 10*a*c*d^2*e^2 + a^2*e^4)*sqrt(-a*e/d)*x^2*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d*e
 + (c*d^2 + a*e^2)*x)*sqrt(-a*e/d)/(a*c*d*e^2*x^2 + a^2*d*e^2 + (a*c*d^2*e + a^2*e^3)*x)) - 2*(2*c^2*d^2*e*x^3
 - 2*a^2*d*e^2 + (5*c^2*d^3 + 9*a*c*d*e^2)*x^2 - (9*a*c*d^2*e + 5*a^2*e^3)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2
+ a*e^2)*x))/x^2]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2)/x**3/(e*x+d),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/x^3/(e*x+d),x, algorithm="giac")

[Out]

Exception raised: TypeError